In silico Characterization and Selection of Epitope-based Peptide Vaccines Against Ebola Viruses
Sameer Sharma,
Sudhakar Malla
Issue:
Volume 6, Issue 1, June 2020
Pages:
1-5
Received:
20 February 2020
Accepted:
3 March 2020
Published:
24 March 2020
Abstract: Background & Objective: To analyze the mutual B and T cell epitope related vaccine which can evoke the immune response against Ebola hemorrhagic fever. Ebola virus is pathogenic in nature which is associated with a systemic disease in man and apes. Ebola virus disease is advised to be zoonotic with random spillovers to human beings, particularly animals, and apes. These viruses can affect on immune suppression, abnormal inflammatory responses and high mortality. Methodology: In this study, membrane proteins NP, VP35, VP40, sGP, ssGP, VP30, and VP24 of Ebola virus were retrieved from the protein databases and subjected to many bioinformatics related tools to identify the antigenic B and T-cell epitopes using antigenicity analysis. The selected epitopes were subjected to molecular docking simulation along with HLA-DR to affirm their antigenicity in silico. Result & Conclusion: The data present in our study exposed that the epitopes from NP, VP35, VP40, sGP, ssGP, VP30, and VP24 proteins might be the specific target for Ebola virus based on the best binding affinity and molecular docking score. The biochemical analysis and various characterization is also mandatory to evaluate the correlation of epitopes solely with the MHC molecules.
Abstract: Background & Objective: To analyze the mutual B and T cell epitope related vaccine which can evoke the immune response against Ebola hemorrhagic fever. Ebola virus is pathogenic in nature which is associated with a systemic disease in man and apes. Ebola virus disease is advised to be zoonotic with random spillovers to human beings, particularly an...
Show More